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Allylation of epoxides with allylic indium reagents
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Abstract—Allylindium sesquihalide reacts with epoxide to give homoallyl alcohol via a 1,2-shift reaction. In contrast, allylindate
gives the ring-opening product without rearrangement.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Epoxides are valuable synthetic units that are used for a-
functionalized alcohols by nucleophilic attack with a
trans-stereospecific ring-opening and Lewis acid-cata-
lyzed rearrangements to the corresponding carbonyl
compounds.1 The reaction of organometallic com-
pounds with epoxides gives 1,2-addition products and/
or rearrangement products depending on the nature of
the organometallics.2 Allylindium reagents have re-
ceived much attention in the past decade3 and the reac-
tion with epoxide was first examined by Yadav et al.,
who reported that the reaction of allyl bromide with styr-
ene oxide (1a) in the presence of indium in THF gave
the corresponding ring-opening alcohols A and B in
high yield (Scheme 1).4

Recently, Oh et al., reported that the reaction of termi-
nal vinyl epoxides with allylindium sesquibromide gave
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Scheme 1.
various bis(homoallyl) alcohols via a consecutive 1,2-
shift reaction (Scheme 2).5

The difference in the above reactions was rationalized by
the nature of the epoxides employed. However, the
assignment of the structure of A on the basis of the 1H
NMR data seem to be questionable; the resonance at
d 2.75ppm of A was assigned as the protons of the a-car-
bon. It is more reasonable for the signal to be assigned
as the benzyl protons in 1-phenylpent-4-en-2-ol (2a).
Alcohol 2a was easily obtained without ambiguity by
the allylation of phenylacetaldehyde, which is known
to be easily available by the reaction of epoxide 1a with
InCl3 (Scheme 3).6 The allylation of this aldehyde with
allylindium sesquiiodide gave 2a in 51% yield and the
1H NMR data of 2a is coincident with the reported data
as A.

Now, we disclose here the results of the reactions of
epoxides with various types of allylindium reagents,
which reveal that the reaction highly depends both on
the epoxides and the allylic indium reagents.
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III: Li[(allyl)4-nMenIn]
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Scheme 4.
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2. Results and discussion

The reaction of 1a with allylindium sesquiiodide (I) was
first conducted as follows: allyl iodide (1.5mmol) and in-
dium (1.0mmol) were mixed in dry THF (2mL) at room
temperature for 1h. To the resulting I, 1a (1.0mmol)
was added and the mixture was stirred for 3h. The reac-
tion was quenched with 1M hydrochloric acid and the
product was extracted with ether. The crude product
was purified by column chromatography on silica gel
(EtOAc–hexane = 1:9) to give 2a in 75% yield (Table
1, entry 1).7 These results show that allylindium ses-
quihalide has enough Lewis acidity to rearrange epox-
ides to aldehydes as InCl3 and that the reaction of
epoxides with allylindium sesquihalide proceeds via
transformation of the epoxides to the corresponding
aldehydes as in the case of vinyl epoxides. Next, the
reactions of other allylic indium reagents with epoxides
were examined. The reaction of the allylic-type diindium
reagent II, prepared from 3-bromo-1-iodopropene and
indium,8 with 1a selectively gave 2a in good yield (entry
2). No coupling product incorporated with two mole-
cules of 1a was found.
InL2L2In
L2In

InL2II
Tetraorganoindium ate-complex (indate) is postulated
as a strong Lewis base and its reaction with epoxides
is considered to be distinct from that of allylindium ses-
quihalide.9 As expected, allylindate III, prepared from I
with MeLi, underwent ring-opening reaction to give a
mixture of alcohols 3a and 4a in 76% yield as shown
in Scheme 4 (entry 3).10

The reaction of I with 2-styryloxirane (1b) gave the cor-
responding homoallylic alcohol 2b in good yield via the
rearrangement to the aldehyde (entry 4), whereas allylin-
date III reacted with epoxide 1b at the substituted car-
bon to give 3b together with a small amount of the
1,4-addition product 5 (entry 5). Allylindate IV, gener-
ated from InCl3/allylmagnesium bromide/MeLi = 1:1:3,
showed the same tendency and afforded 3b selectively
(entry 6). The rearrangement product 2b was obtained
in entry 6 as a by-product, which may be caused by
the presence of magnesium salt. The reaction of alkyl
epoxide 1c resisted allylation, and heating and prolong-
Table 1. Reaction of epoxides with allylindium reagentsa

Entry 1 Allylindium Conditions Total yield

(%) 2:3:4

1 1a I THF, rt, 3h 75 (100:0:0)

2 1a II THF, 3h 65 (100:0:0)

3 1a III THF–Et2O (4:5), rt, 1h 76 (0:38:62)

4 1b I THF, rt, overnight 57 (100:0:0)

5 1b III THF–Et2O (4:5) rt, 0.5h 70 (0:100:0)b

6 1b IV THF–Et2O (4:5), rt, 1h 80 (19:81:0)c

7 1c I THF, rfx, overnight 26 (100:0:0)

8 1c III THF, rt, 2h 86 (0:0:100)

a All reactions were performed with allylindium/epoxide = 1:1.
b The 1,4-adduct 5 was obtained in 2% yield.
c The 1,4-adduct 5 was obtained in 5% yield.
ing the reaction time were needed for allylation to fur-
nish 2c in low yield (entry 7). On the contrary, the
reaction of allylindate III proceeded smoothly via nucleo-
philic attack at the less hindered carbon to give 4c in
high yield (entry 8). In the reactions involving allylmeth-
ylindates, (entries 3, 5, 6 and 8) the allyl group was selec-
tively migrated to epoxide as the reaction with allylic
halides in our previous report.9

In general, strong nucleophiles attack at the least hin-
dered carbon of epoxide due to steric effect.2 Allylindate
favoured the attack at the less hindered carbon of alkyl
epoxide 1c. However, the regioselectivity is not a simple
issue. The coordination of the counter ion to the oxygen
of epoxide causes polarization between the C–O bond
and a positive charge is developed at the ring carbon,
where the ability to stabilize the positive charge is one
reason to determine the regioselective attack of nucleo-
philes. Indeed, the attack at the substituted (benzyl) car-
bon of 1a occurred to some extent (entry 3). The same
tendency was observed in the case of allylmanganate.2

When vinyl epoxide 1b was employed, the 1,2-addition
competes with the 1,4-additon. The 1,2-adducts coupled
at the allylic carbon were much favoured although a
small amount of the 1,4-adduct 5 was obtained (entries
5 and 6). The observed ratio 1,2-/1,4-adduct is similar
to that with butylaluminate.2e

In summary, we have demonstrated that allylindium ses-
quihalide has enough Lewis acidity to induce the rear-
rangement of epoxide prior to the direct allylation,
and the resulting aldehydes undergo allylation to give
the corresponding homoallylic alcohols irrespective of
the substituent of epoxides. In contrast, allylindate di-
rectly reacts with epoxides to give the ring-opening
products. The regioselectivity of the allylation is depend-
ent on the substituent of epoxides.
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